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In this supplementary paper, we provide details of the model fitting algorithm in Section S1 and a
simulation procedure in Section S2 to evaluate the asymptotic distribution in Proposition 5. In Section S3,

we also provide some additional simulation results.

S1. Model fitting using EM algorithm

We now provide the detailed algorithm to maximize the penalized likelihood in Section 2.

S1.1. E-Step with Gauss-Hermite quadrature approrimation

At the tth iteration of the algorithm, given the parameter value 6"V from the previous iteration, we

first evaluate the following loss function at the E-step

n C
QO 6" = ZE[‘gi,comp(a;YhXD’YhLi) 1Y, X007 + an(0253;2;i10t) (S.1)

i=1 c=1

where
E [&,aomp(e;yi,Xi,’yi,Li) | Yi,XhH(t_l)}
C
= Z/logf(Yi | X570, f (7, Lic = 1| X, Y ;007 ) dy

c=1
C

+Z/10gfc(’7 | ILLC7Uc>f(’y,LZ'C — 1 | Xlayq,,e(til))dfy
c=1

C
+Zlog7fc/f(%Lic =1|X;,Y;;0"V)dy,

c=1

*Corresponding author
Email addresses: planfeng@amazon.com (Lanfeng Pan), yehuali@ucr.edu (Yehua Li ), kevinhe@umich.edu (Kevin He ),
liyanminQumich.edu (Yanming Li), yiliGmed.umich.edu (Yi Li)

Preprint submitted to Journal of Multivariate Analysis September 3, 2019



10 and f('YaLic =1 | Xi;Yﬁa(til)) is

-1 L(t 1)

7T£t )f( |Xz777 1/ )(t 1)¢(’Y (/t 1))
C 1 (t 1) .
ST [ R X705 ) o (S ) dy

Expectation for a function of a Gaussian random variable can be closely approximated by Gauss-Hermite

quadrature:
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where h(7) is an integrable real valued function, v,, = u+v/20d,,, di, . .., dys are the Gauss-Hermite abscissas
and wy, ..., wys are the corresponding quadrature weights. We find in our numerical studies that using M =
15 100 quadrature points usually provides a close enough approximation. Denote (") = pgtfl) + \/iogtfl)dm.

The Gauss-Hermite approximation for Q(6 | 6“1 is
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S51.2. M-Step

In the M-step, we maximize @(0 | 0(t_1)) with respect to €, and update different components of 8 by
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» and obtain O(t) by maximizing Y ., ZC 1 Zm L Wiemlogf (Y | Xi,~(©™);0,) using iteratively reweighted
least squares.
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S1.3. Stopping rule and random effect prediction

Following Booth and Hobert [1], we stop the EM algorithm at iteration ¢ if
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where 0; is the Ith entry in 6.

At convergence, the weight w;., can be used to calculate some other quantities of interest, such as the
marginal likelihood, the posterior probability of 7; belonging to the cth component and posterior mean of ~;

. For example, we predict 7; by its posterior mean
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Using the Gauss-Hermite approximation, the posterior mean is approximated by
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where wjep, is defined in (S.2) evaluated at 0.
To obtain reasonable initial values for 8, and 6.,, we first run a generalized linear mixed model assuming
vi’s are 1.i.d. normal. We use the estimated fixed effects as initial values for 8, fit a Gaussian mixture model

on the predicted values 4 and use the results as the initial values for 6.,.

S2. Simulation Approach for the Asymptotic Distribution in Proposition 5

We use the following procedure to simulate the asymptotic distribution in Proposition 5 under the
hypothesis Hy : Cp = C.
Step 0. Fit a C-component latent Gaussian mixture model and obtain the reduced model estimator /G\Ted.

(e)

Step 1. Calculate 8; = (s;":i,éli)—r with 8, = {(sg\lz)—'—, e (SE\?)T}T, where s, ; and 8,3, c=1,...,C, are

the score functions for the restricted full models defined in (11) evaluated at /émd. Let

be the sample version of T = Eéiélr, and calculate jAIn = j)\ —jMI;I (j)\n)T. To improve numerical stability,
we check if I is an ill conditioned matrix. If so, set the eigenvalues with small absolute values to be a small

positive number.

Step 2. Generate random a vector
T -
s={O)T, 6N} ~ NIy,
Let I g\c‘; be the sub diagonal matrix of I Aln corresponding to s(9. Then

T}, = max {(s(c))T(IE\%)*ls(c), c=1,..., c}



© has the same asymptotic distribution as Te:(7) and Te.

Step 3. Repeat Step 2 a large number of times and use the empirical distribution of T, to approximate the

asymptotic distribution of fg.

S3. Additional Simulation Results

Recall that Models 1 and 2 in the simulation study are latent Gaussian mixture models with 2 and 3
s mixture components respectively. Tables S.1 and S.2 are the estimation results for the model parameters,

when the model is misspecified as the classic GLMM with a homogeneous Gaussian random effect.

Table S.1: Additional simulation results for Model 1, when the model is misspecified as GLMM with a Gaussian random effect.
Results are based on 200 replications.

Mean Std
m  1.0000 0.0000
p1 -1.2716  0.1208
o1 23397 0.0722
51 1.0003 0.0203
By 1.0010 0.0204

Table S.2: Additional simulation results for Model 2, when the model is misspecified as GLMM with a Gaussian random effect.
Results are based on 200 replications.

Mean Std
m  1.0000 0.0000
p1 -0.8085 0.1745
o1 3.4584 0.1371
B1 1.0057 0.0240
B> 1.0082 0.0218
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